
Multi-Modal Program
Representation Learning

Candidacy Exam Presentation
Saikat Chakraborty (sc4537)

Committee:

1

Dr. Baishakhi Ray Dr. Junfeng Yang Dr. Ronghui Gu

Department of Computer Science
Columbia University

New York, NY

Artificial Intelligence - Everywhere

[Image taken from samsung.com]
2

Artificial Intelligence for Software Engineers

[Image taken from zeolearn] 3

Artificial Intelligence
for

Source Code Analysis

Naturalness of Software (Hindle et. al. ICSE’12)

4

Why AI/ML works in Software Engineering

5

6

Do we really need AI/ML for code analysis?

Perhaps we DO need AI/ML in SE

7

Sort a List of Tuples by first element.

Perhaps we DO need AI/ML in SE.

8

Sort a List of Tuples by first element.

Program Synthesis Task

Perhaps we DO need AI/ML in SE.

9

Sort a List of Tuples by first element.

Code Translation

Task

Perhaps we DO need AI/ML in SE.

10

Vulnerability Detection Task

Application of AI in SE

1. Program Understanding (Discriminative)
a. Vulnerability Detection (e.g. VulDeePecker, SySeVR, Russell et. al.)
b. Clone Detection (e.g. Yu et. al.)
c. Property Prediction (e.g. Code2Vec)

2. Program Generative Tasks
a. Code Summarization (e.g. Ahmad et. al., Allamanis et. al., Code2Seq)
b. Code Generation (e.g. Yin et. al., Sun et. al.)
c. Code Translation (e.g. Codit, SequenceR, Drissi et. al., Chen et. al.)

3. Other Applications
a. Code Completion (Hellendroon et. al., Parvez et. al.)

11

Challenge in Application of AI in SE

1. Program Understanding (Discriminative) Tasks
a. Understand the program.
b. Understand the non-linear relationship between tokens in code.

i. Syntactic dependencies
ii. Semantic dependencies

2. Generative Tasks
a. Syntactic correctness guarantee.
b. Semantic correctness guarantee.
c. Stylistic correctness guarantee.

12

Example of Invalid code.

13

Syntactically Incorrect

Semantically Incorrect

Stylistic Incorrect

How things are done in literature (Encoding)

1. Program Understanding (Discriminative) Tasks

14

Method specific representation

Deterministic

Code Embedding

ML Model

How things are done in literature (Encoding)
1. Sequence of tokens

15

Russell et. al.

Used models : RNN, LSTM, CNN, etc.

How things are done in literature (Encoding)
 2. AST

16

Used models : ASTNN (Zhang et. al.), Hierarchical RNN (Code2Vec)

How things are done in literature (Encoding)
 3. Graph

17

Used models : Gated Graph Neural Network (Allamanis et. al., Devign)

Pros. and Cons. (Encoding)

18

Sequence Tree Graph

Pros

Cons

- Faster and Simpler
methods.

- Capture syntax.
- Can reason about the
syntactic dependencies.

- Captures both syntax and
semantic dependencies.
- Good for reasoning about
semantic relationship between
tokens.

- Not merely a sequence
of tokens.
- Lacks Syntax info.
- Lacks Semantic info.

- Slightly more complicated
models.
- Still lack the semantic
dependencies (data flow).

- Very complex models.
- Sometimes the yield is not so
much worth the complexity.

How things are done in literature (Generation)

1. Program Synthesis (Generative) Tasks

19

Embedding

Input
(text : find an element)

Code Generation Model

How things are done in literature (Generation)

1. Sequence based generation

20

Embedding

Input
(text : find an element)

Used models : RNN, GRU, LSTM (all with beam search)

How things are done in literature (Generation)

1. Tree/Grammar based generation

21

Embedding

Input
(text : find an element)

Pros. and Cons. (Decoding/Generation)

22

Sequence Tree

Pros

Cons

- Easier to implement.
- Off the shelf models can be used
directly.

- Generates Syntactically correct code.
- Easier when the goal is to generate template
rather the the full code.

- May generate syntactically invalid
code.
- Might also create semantically wrong
code.

- More complex models.
- Often difficult to model because of the large
grammar.
- Modeling tokens/identifiers still remains a
challenge
- Semantic correctness is still not guaranteed.

Some Interesting Points to note

23

1. Learn about the token formation.
2. Learn about the syntax.
3. Learn about the data flow.
4. Need to learn the structure of the code.

5. Learn to reason about everything above.

Sort a List of Tuples by first element.

Learning about the
“Language”

Learning about the
“Task”

Some Interesting points to note

24

Language Model Task Model

What are the challenges in joint learning?

1. Most of the task needs annotation/objective to update the model.
2. Demand for data increases with the complexity of the task.
3. Data is highly demanded by more complex models.

25

Can we lessen the burden for model?

Can we transfer any knowledge from elsewhere?

1. Word2Vec in code (used by VulDeePecker, SySeVR, Devign) can be a way.
2. Code2Vec; another way.

26

Task agnostic “Pre-Training” (ELMo)

27

Pre-train the base Model with
task agnostic Language

Modeling Objective.

ELMo (pros and cons)

- Pros:
- Reduces burden on learning task specific reasoning.

- Cons:
- Uses (Bidirectional)LSTM as base model.
- Cannot capture the non-linear language constructs in code.

- Prospective Solution :
- Pretrain tree of graph based models.

28

Information propagation in models

1. Sequence Based Models

29

2. Graph Based Models

Transformer - A fantastic Idea

30

1. Implicitly learns non-linear structure in the input data.
2. Often very large/deep models with very high capabilities.
3. Learns the syntactic and semantic relationship very well.

BERT-Pretrained Transformer

31

Pre-training:
Task agnostic Masked Language
Model.

Fine Tuning:
Task Specific Objective.

CodeBERT - BERT for Code

32

BERT - Any Problem?
1. Just a Transformer encoder.
2. Works very well for

Understanding/Descriminative tasks.
3. Must be accompanied with a decoder (trained from

scratch during fine-tuning).
4. Decoder itself may demand high volume of data.

33

BART / PLBART (Denoising auto-encoding)

PLBART:

1. Trained on 470M Java code, 210M Python Code, 47M Stackoverflow posts.
2. Multiple languages - for pre-training one model for different SE tasks.

34

Some Interesting results from PLBART (generative)

35

Code Summarization

C
od

e
Sy

nt
he

si
s

C
od

e
Tr

an
sl

at
io

n

Some Interesting results from PLBART (understanding)

36

Some Interesting examples of PLBART

37

Take Away Points

1. Machine learning in source code analysis showed a lot of promise over the years.
2. Source code exhibit different information through different input modalities, such as

identifier names, syntax, semantic interaction between identifiers.
3. A good model for a particular task should exploit appropriate information modality.
4. Code synthesis is fundamentally different and more challenging than code

understanding.
5. Annotated data scarcity can be overcome by unsupervised pre-training of a model.
6. A pretrained model should contain multiple modality (implicit/explicit), since

pre-training is very expensive.

38

A sample pattern

If code fragments matches
“if ($condition) {return
true;} else {return false;}”
Replace with
“return $condition;”

That is just one pattern. How many pattern shall we write to give the developer
a complete solution?

Potential Solutions - Code Editing

41

42

