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Artificial Intelligence - Everywhere
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Artificial Intelligence for Software Engineers
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Artificial Intelligence 
for 

Source Code Analysis



Naturalness of Software (Hindle et. al. ICSE’12)
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Why AI/ML works in Software Engineering
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Do we really need AI/ML for code analysis? 



Perhaps we DO need AI/ML in SE 
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Sort a List of Tuples by first element.



Perhaps we DO need AI/ML in SE.
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Sort a List of Tuples by first element.

Program Synthesis Task



Perhaps we DO need AI/ML in SE.
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Sort a List of Tuples by first element.

Code Translation 

Task



Perhaps we DO need AI/ML in SE.
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Vulnerability Detection Task



Application of AI in SE

1. Program Understanding (Discriminative)
a. Vulnerability Detection (e.g. VulDeePecker, SySeVR, Russell et. al.)
b. Clone Detection (e.g. Yu et. al.)
c. Property Prediction (e.g. Code2Vec)

2. Program Generative Tasks
a. Code Summarization (e.g. Ahmad et. al., Allamanis et. al., Code2Seq)
b. Code Generation (e.g. Yin et. al., Sun et. al.)
c. Code Translation (e.g. Codit, SequenceR,  Drissi et. al., Chen et. al.)

3. Other Applications
a. Code Completion (Hellendroon et. al., Parvez et. al.)
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Challenge in Application of AI in SE

1. Program Understanding (Discriminative) Tasks
a. Understand the program. 
b. Understand the non-linear relationship between tokens in code.

i. Syntactic dependencies
ii. Semantic dependencies

2. Generative Tasks
a. Syntactic correctness guarantee.
b. Semantic correctness guarantee.
c. Stylistic correctness guarantee. 
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Example of Invalid code.
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Syntactically Incorrect

Semantically Incorrect

Stylistic Incorrect



How things are done in literature (Encoding)

1. Program Understanding (Discriminative) Tasks
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Method specific representation

Deterministic

Code Embedding

ML Model



How things are done in literature (Encoding)
1. Sequence of tokens
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Russell et. al.

Used models :  RNN, LSTM, CNN, etc.



How things are done in literature (Encoding)
  2.  AST
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Used models : ASTNN (Zhang et. al.), Hierarchical RNN (Code2Vec)
 



How things are done in literature (Encoding)
  3.  Graph
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Used models : Gated Graph Neural Network (Allamanis et. al., Devign)
 



Pros. and Cons. (Encoding)
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Sequence Tree Graph

Pros

Cons

-   Faster and Simpler 
methods.

-   Capture syntax. 
-   Can reason about the 
syntactic dependencies.

-   Captures both syntax and 
semantic dependencies.
-   Good for reasoning about 
semantic relationship between 
tokens.

-   Not merely a sequence 
of tokens.
-   Lacks Syntax info.
-   Lacks Semantic info.

-    Slightly more complicated 
models.
-    Still lack the semantic 
dependencies (data flow).

-   Very complex models.
-   Sometimes the yield is not so 
much worth the complexity.



How things are done in literature (Generation)

1. Program Synthesis (Generative) Tasks
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Embedding

Input
(text : find an element)

Code Generation Model



How things are done in literature (Generation)

1. Sequence based generation
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Embedding

Input
(text : find an element)

Used models : RNN, GRU, LSTM (all with beam search)



How things are done in literature (Generation)

1. Tree/Grammar based generation
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Embedding

Input
(text : find an element)



Pros. and Cons. (Decoding/Generation)
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Sequence Tree

Pros

Cons

-   Easier to implement.
-   Off the shelf models can be used 
directly.

-   Generates Syntactically correct code. 
-   Easier when the goal is to generate template 
rather the the full code. 

-   May generate syntactically invalid 
code. 
-   Might also create semantically wrong 
code. 

-   More complex models. 
-   Often difficult to model because of the large 
grammar. 
-   Modeling tokens/identifiers still remains a 
challenge
-   Semantic correctness is still not guaranteed.



Some Interesting Points to note
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1. Learn about the token formation.
2. Learn about the syntax.
3. Learn about the data flow. 
4. Need to learn the structure of the code. 

5. Learn to reason about everything above. 

Sort a List of Tuples by first element.

Learning about the 
“Language”

Learning about the 
“Task”



Some Interesting points to note
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Language Model Task Model



What are the challenges in joint learning? 

1. Most of the task needs annotation/objective to update the model. 
2. Demand for data increases with the complexity of the task. 
3. Data is highly demanded by more complex models. 
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Can we lessen the burden for model?

Can we transfer any knowledge from elsewhere? 

1. Word2Vec in code (used by VulDeePecker, SySeVR, Devign) can be a way. 
2. Code2Vec; another way. 
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Task agnostic “Pre-Training” (ELMo)
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Pre-train the base Model with 
task agnostic Language 

Modeling Objective.



ELMo (pros and cons)

- Pros: 
- Reduces burden on learning task specific reasoning.

- Cons:
- Uses (Bidirectional)LSTM as base model. 
- Cannot capture the non-linear language constructs in code.

- Prospective Solution :
- Pretrain tree of graph based models.  
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Information propagation in models

1. Sequence Based Models
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2.    Graph Based Models



Transformer - A fantastic Idea
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1. Implicitly learns non-linear structure in the input data.
2. Often very large/deep models with very high capabilities.
3. Learns the syntactic and semantic relationship very well. 



BERT-Pretrained Transformer
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Pre-training: 
Task agnostic Masked Language 
Model.

Fine Tuning:
Task Specific Objective.



CodeBERT - BERT for Code
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BERT - Any Problem? 
1. Just a Transformer encoder.
2. Works very well for 

Understanding/Descriminative tasks.
3. Must be accompanied with a decoder (trained from 

scratch during fine-tuning).
4. Decoder itself may demand high volume of data.
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BART / PLBART (Denoising auto-encoding)

PLBART:

1. Trained on 470M Java code, 210M Python Code, 47M Stackoverflow posts.
2. Multiple languages - for pre-training one model for different SE tasks. 
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Some Interesting results from PLBART (generative)
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Code Summarization
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Some Interesting results from PLBART (understanding)
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Some Interesting examples of PLBART
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Take Away Points

1. Machine learning in source code analysis showed a lot of promise over the years.
2. Source code exhibit different information through different input modalities, such as 

identifier names, syntax, semantic interaction between identifiers. 
3. A good model for a particular task should exploit appropriate information modality. 
4. Code synthesis is fundamentally different and more challenging than code 

understanding.
5. Annotated data scarcity can be overcome by unsupervised pre-training of a model.
6. A pretrained model should contain multiple modality (implicit/explicit), since 

pre-training is very expensive. 
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A sample pattern

If code fragments matches
“if ($condition) {return 
true;} else {return false;}”
Replace with 
“return $condition;”

That is just one pattern. How many pattern shall we write to give the developer 
a complete solution?

Potential Solutions - Code Editing
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