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Automatic Code Editing

123



Adding Feature
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Adding Feature

Bug-fixing
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Adding Feature

Bug-fixing
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Refactoring



Code Edits Are Repetitive (Meng et. al. 2011[1], 2013[2], Ray et. al. 2015[3])
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Code Edits Are Repetitive (Meng et. al. 2011[1], 2013[2], Ray et. al. 2015[3])(Meng et. al. 2011[1], 2013[2], Ray et. al. 2015[3])

Is it possible to 

Automate

Such Code Edits?
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Automating Code Edits - Template/Search based
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Automating Code Edits - Template/Search based
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Automating Code Edits - Template/Search based

Match Found
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Edit Template



Automating Code Edits - Template/Search based
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Edit Template

Patch Applied



Automating Code Edits - Template/Search based
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Edit Template

Patch Applied

● Too many templates to write (Saha et al.[22])



Code Editing Task - Learning Based Solution 
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Code Editing Task - Learning Based Solution 

Example Code Edits
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Code Editing Task - Learning Based Solution 

Example Code Edits

Code Before Edit
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Code Editing Task - Learning Based Solution 

Example Code Edits

Code Before Edit Code After Edit
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1

What are my Contributions? 

Identification of 
Technical 
Challenges in
Learning based Code 
Editing.

Development of 
Models for 
Automated

Code Editing.

Application in 
Automatic 
Program Repair 
and Other SE 
tasks.



Automated Code Editing - Existing works.
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Automated Code Editing - Existing works.
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Template-based 1. Modern IDE (Eclipse, IntelliJ IDEA) - Refactoring, Boilerplate Code.

2. Meng et.al. - PLDI’11 - Infer edit template with graph matching [1].



Automated Code Editing - Existing works.
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Mutation Learning 1. Rolim et. al. - ICSE’17 - Designed a DSL for representing Edits [4]. 

2. Dinella et.al. - ICLR’20 - Neural Turing Machine [5].

Template-based 1. Modern IDE (Eclipse, IntelliJ IDEA) - Refactoring, Boilerplate Code.

2. Meng et.al. - PLDI’11 - Infer edit template with graph matching [1].



Automated Code Editing - Existing works.
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Encoder-Decoder 
1. Tufano et. al. - ASE’18 [6], ICSE’19 [7], TOSEM’19 [8]. 

- Abstract tokenization.

2. Chen et. al. - TSE’19 - Copy Attention-based models [9].

3. Tufano et. al. - ICSE’21. - Multi-Encoder models[10]. 

Mutation Learning 1. Rolim et. al. - ICSE’17 - Designed a DSL for representing Edits [4]. 

2. Dinella et.al. - ICLR’20 - Neural Turing Machine [5].

Template-based 1. Modern IDE (Eclipse, IntelliJ IDEA) - Refactoring, Boilerplate Code.

2. Meng et.al. - PLDI’11 - Infer edit template with graph matching [1].



Encoder-Decoder
Based Code Editing
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Code Editing with Encoder-Decoder

Encoder and Decoder learns Edit Pattern and 

To Apply the Pattern in Similar Context.
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Encoder-Decoder Based Code Editing

Where does my dissertation stand?
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Method
Concrete 

Code
Syntactic 

Correctness
Contextual 
Correctness

Code 
Naturalness

Multi
Modality

M. Tufano et. al. ASE 2018 [6], ICSE 2019 [7]

SequenceR - Chen et. al. TSE 2019 [9]

CODIT - TSE 2020

CodeBERT* - Feng et. al. EMNLP 2020 [11]

PLBART - NAACL 2021

CoCoNut - Lutellier et. al. ISSTA 2020 [12]

R. Tufano et. al. - ICSE 2021 [10]

MODIT – ASE 2021

NatGen – FSE 2022

Used/Guaranteed Not Used No guarantee Empirical guarantee

* While CodeBERT is an encoder only pretrained model, it has been used for program repair with a transformer decoder trained from scratch. 



Code Editing with Encoder-Decoder

151



Code Editing with Encoder-Decoder

Encoder encodes the input code to a vector or matrix.
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Code Editing with Encoder-Decoder

Encoder encodes the input code to a vector or matrix.Decoder generates the edited code.
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Desired Properties of 
Encoder and Decoder
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Properties of Source Code.
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Syntax 
Structure

Properties of Source Code.
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Syntax 
Structure

Data
Dependency

Control
Dependency

Properties of Source Code.



Source 

Code
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Desired Properties of the Encoder

Encoder



Source 

Code
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Desired Properties of the Encoder

Encoder

Understand 
Structure



Source 

Code
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Desired Properties of the Encoder

Encoder

Understand 
Structure

Understand 
Dependency



1. Syntactic correctness.

2. Semantic correctness.
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Desired Properties of the Decoder

Decoder



1. Syntactic correctness.

2. Semantic correctness.

Syntactically Incorrect
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Desired Properties of the Decoder

Decoder
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Desired Properties of the Decoder

Decoder



1. Syntactic correctness.

2. Semantic correctness.

Syntactically Incorrect Semantically Incorrect
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Desired Properties of the Decoder

Decoder
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Code Editing as Understanding and Generation
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Code Editing as Understanding and Generation

Understanding 
Source Code

Understanding Structure
And Functionality of Source Code
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Code Editing as Understanding and Generation

Understanding 
Source Code

Understanding Structure
And Functionality of Source Code

Generating 
Source Code

Ensuring the Syntactic and Semantic 
Correctness for Generating Source Code
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Code Editing as Understanding and Generation

Syntax

Semantics

Encoding

Understanding 
Source Code

Understanding Structure
And Functionality of Source Code

Generating 
Source Code

Ensuring the Syntactic and Semantic 
Correctness for Generating Source Code



Code 
Modeling

Explicit 
Encoding

Implicit 
Encoding

Natural Channel 
Mutation

Formal Channel 
Mutation
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Syntax

Semantics

Ways of 

Encoding

Encoding PL Properties



172

Code 
Modeling

Explicit 
Encoding

Implicit 
Encoding

Natural Channel 
Mutation

Formal Channel 
Mutation

Explicit Encoding



173

Code 
Modeling

Explicit 
Encoding

Implicit 
Encoding

Natural Channel 
Mutation

Formal Channel 
Mutation

Explicit Encoding



174

[13]  Learning to Represent Program as Graphs

Allamanis et. al. 2017

[14]  Learning to Represent Edits

Yin et. al. 2019

[5]  HOPPITY – Dinella et. al. 2020

Code 
Modeling

Explicit 
Encoding

Implicit 
Encoding

Natural Channel 
Mutation

Formal Channel 
Mutation

Explicit Encoding



CODIT: Code 
Editing With 
Tree Based 

Neural Models
TSE - 2020

Findings

Generation of Syntax Tree

instead of code Guarantees 

Syntactic Correctness.

Contribution

Tree/Grammar Based Model 

for Automatic Code Editing.
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CODIT: Code Editing With Tree Based Neural Models



Code Before Edit
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CODIT: Code Editing With Tree Based Neural Models



Code Before Edit
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CODIT: Code Editing With Tree Based Neural Models



Code Before Edit

179

CODIT: Code Editing With Tree Based Neural Models



Code Before Edit Code After Edit
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CODIT: Code Editing With Tree Based Neural Models



Code Before Edit Code After Edit
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CODIT: Code Editing With Tree Based Neural Models



Code Before Edit Code After Edit
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CODIT: Code Editing With Tree Based Neural Models
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CODIT Step 1 : Tree Translation
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CODIT Step 1 : Tree Translation
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CODIT Step 2 : Token Generation



Token 

Translation
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CODIT Step 2 : Token Generation



Token 
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CODIT Step 2 : Token Generation
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CODIT Step 2 : Token Generation
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CODIT Step 2 : Token Generation



Reachability Analysis in Edit Location
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CODIT Step 2 : Token Generation



Reachability Analysis in Edit Location

Reachable Variables in 

Edit Location:

{inst, object, tmp}
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CODIT Step 2 : Token Generation



CODIT

Evaluation
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Data Set
Number 
of 
Projects

Number 
of Edit 
Examples

Code Fragment Size

Number of Tokens Number of Nodes

Generic Code 
Edit  from Github

48 32,473
Max - 38
Avg  - 15

Max - 47
Avg  - 20

Pull Request 
Edits –Tufano et 
al. [7]

3 5546
Max - 34
Avg  - 17

Max - 47
Avg  - 23

193

CODIT: Study Subjects



Method Generic Code Edits Pull Request Edit

Sequence 
Based

LSTM-Seq2Seq 3.77% 11.26%

Tufano et. al. [7] 6.57% 23.65%

SequenceR [9] 9.76% 26.43%

Tree Based

Tree2Seq 11.04% 23.49%

CODIT 15.94% 28.87%

194

CODIT: Results (Accuracy in top 5)
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Example Edits

Addition

Deletion

Update



Application - Automatic Program repair

CODIT fixes 15 bugs completely and 10 bugs partially, out of 80 bugs in Defects4j.

196

JFreeChart

:  Bug-8

Closure 

Compiler: 

Bug-3
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Context Free Grammar

Explicit Encoding
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Context Free GrammarReachability Analysis

Explicit Encoding
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• Precision

• Guarantee

• Explainable

• Low Resource

Pros

• Model design overhead

• Transferability
Cons

Explicit Encoding – Take Away

Code 
Modeling

Explicit 
Encoding

Implicit 
Encoding

Natural Channel 
Mutation

Formal Channel 
Mutation
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Implicit Encoding

Code 
Modeling

Explicit 
Encoding

Implicit 
Encoding

Natural Channel 
Mutation

Formal Channel 
Mutation
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Implicit Encoding

Code 
Modeling

Explicit 
Encoding

Implicit 
Encoding

Natural Channel 
Mutation

Formal Channel 
Mutation

Large Data Corpus
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[11] CodeBERT – Feng et. al. 2019

[16] GraphCodeBERT – Guo et. al. 2020

[17] CodeX – Chen et. al. 2021

[18] CodeT5 – Wang et. al. 2021

Implicit Encoding

Code 
Modeling

Explicit 
Encoding

Implicit 
Encoding

Natural Channel 
Mutation

Formal Channel 
Mutation

Large Data Corpus

Corrupted Input Code Regenerated Correct Code 
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Implicit Encoding - Pretraining

[17] CodeX – Chen et. al. 2021

[21] Github Copilot

[22] Amazon CodeWhisperer
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Implicit Encoding - Pretraining

Large Models  
(Millions of 
Parameters)

[17] CodeX – Chen et. al. 2021

[21] Github Copilot

[22] Amazon CodeWhisperer
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Implicit Encoding - Pretraining

Hundreds of 
Gigabytes of 
source code

Large Models  
(Millions of 
Parameters)

[17] CodeX – Chen et. al. 2021

[21] Github Copilot

[22] Amazon CodeWhisperer
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Implicit Encoding - Pretraining

Hundreds of 
Gigabytes of 
source code

Large Models  
(Millions of 
Parameters)

Large numbers 
of unsupervised 

training steps
[17] CodeX – Chen et. al. 2021

[21] Github Copilot

[22] Amazon CodeWhisperer
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Implicit Encoding - Pretraining

Large Data Corpus
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Implicit Encoding - Pretraining

Large Data Corpus

EncoderDecoder
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Implicit Encoding - Pretraining

Correct Code

Large Data Corpus

EncoderDecoder
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Implicit Encoding - Pretraining

Correct Code
Noise 

Injector

Large Data Corpus

EncoderDecoder
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Implicit Encoding - Pretraining

Correct Code Noisy Code
Noise 

Injector

Large Data Corpus

EncoderDecoder
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Implicit Encoding - Pretraining

Correct Code Noisy Code
Noise 

Injector

Large Data Corpus

EncoderDecoder
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Implicit Encoding - Pretraining

Correct Code Noisy Code
Noise 

Injector

Large Data Corpus

EncoderDecoder
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Implicit Encoding - Finetuning

Input (e.g. Code 
before edit, Context, 

etc.)

Output (e.g. Code 
after edit

Finetuning

Correct Code Noisy Code

EncoderDecoder

Noise 

Injector
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Noise Injectors & Dual Channel Hypothesis for Source Code [19]

Correct Code Noisy Code

Noise Injector
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Noise Injectors & Dual Channel Hypothesis for Source Code [19]

Correct Code Noisy Code

Noise Injector
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Natural Channel [19, 20]

Noise Injectors & Dual Channel Hypothesis for Source Code [19]

Correct Code Noisy Code

Noise Injector
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Natural Channel [19, 20] Formal Channel

Noise Injectors & Dual Channel Hypothesis for Source Code [19]

Correct Code Noisy Code

Noise Injector
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[19] Casalanuovo et. al. 2020

[20] Karampatsis et. al. 2020

Natural Channel [19, 20] Formal Channel

Noise Injectors & Dual Channel Hypothesis for Source Code [19]

Correct Code Noisy Code

Noise Injector
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Mutator

Code 
Modeling

Explicit 
Encoding

Implicit 
Encoding

Natural Channel 
Mutation

Formal Channel 
Mutation

Natural Channel Mutation



Unified Pre-
training for 

Program 
Understanding 
and Generation 

(PLBART)
NAACL - 2021

221

Findings

PL properties can be learned 

from large scale source- code 

dataset.

Contribution

Developed large scale pre-

trained models for different SE 

tasks.



PLBART – What Is It?

222

Encoder Decoder



PLBART – What Is It?
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Encoder Decoder

• Transformer Based Models

• 6 Encoder Layer, 6 Decoder Layer

• 12 attention heads
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PLBART – Components
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Encoder

1. Read Code.

2. Understands Code.

3. Reason about any errors in code.

4. Learns robust representation

PLBART – Components
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Encoder

1. Read Code.

2. Understands Code.

3. Reason about any errors in code.

4. Learns robust representation

1. Generate Code.

2. Learns Coding Patterns. 
Decoder

PLBART – Components



Correct Code Noisy Code

EncoderDecoder

Noise Injector

PLBART
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PLBART – Pretraining



Correct Code Noisy Code

EncoderDecoder

Noise Injector

PLBART
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Token Masking Token Deletion Token Infilling

PLBART – Pretraining
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Token Masking

PLBART – Jointly Learning to Understand and Generate
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Token Masking

PLBART – Jointly Learning to Understand and Generate

PLBART
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Token Masking

PLBART – Jointly Learning to Understand and Generate

PLBART
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Token Deletion

PLBART – Jointly Learning to Understand and Generate
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Token Deletion

PLBART – Jointly Learning to Understand and Generate

PLBART
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Token Deletion

PLBART – Jointly Learning to Understand and Generate

PLBART
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Token Infilling

PLBART – Jointly Learning to Understand and Generate
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Token Infilling

PLBART – Jointly Learning to Understand and Generate

PLBART
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Token Infilling

PLBART – Jointly Learning to Understand and Generate

PLBART



PLBART – Pretraining

● Noise Properties
○ Mutate Natural Channel

○ Likely to Break Syntax
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PLBART – Pretraining

● Noise Properties
○ Mutate Natural Channel

○ Likely to Break Syntax

● Training Objectives
○ Generate the whole code. 

○ Learns syntax implicitly

○ Learn Coding Patterns. 

● Multi-lingual Training
○ Java

○ Python

○ NL from Stack overflow
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PLBART – Pretraining

● Noise Properties
○ Mutate Natural Channel
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○ Learns syntax implicitly

○ Learn Coding Patterns. 

● Multi-lingual Training
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○ Python

○ NL from Stack overflow
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PLBART

Evaluation
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Downstream Tasks
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Downstream Tasks
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Code Editing (Program Repair) Result

Dataset: Bugfix dataset, Tufano et. al. 2019 [7] – Abstract Edit
Metric: EM (exact match) in Top-1 position
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Small - Upto 50 Tokens 

Medium - 51-100 tokens 
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Developers Guidance
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Developers Guidance Context
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Developers Guidance Context



MODIT : Multi-
Modal Learning of 

Editing Source 
Code

- ASE 2021

249

Findings

Developer Guidance and 

Context of Edit are very 

important for Automated Code 

Editing.

Contribution

Leveraging multiple 

information modalities to 

Automate Code editing, and 

identification of best way of 

processing such modalities.
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MODIT : Multi Modal Code Editing (pipeline)
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MODIT : Multi Modal Code Editing (pipeline)
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MODIT : Multi Modal Code Editing (pipeline)

PLBART



253

MODIT : Multi Modal Code Editing (pipeline)

PLBART



MODIT

Evaluation
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Experiments

Dataset (Tufano et. al. ICSE 2019 [7]) – Concrete Edits



(PLBART)
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MODIT : Result
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Interesting Code Generated by PLBART
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PLBART generated

Interesting Code Generated by PLBART
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PLBART generated Better Code

Interesting Code Generated by PLBART
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PLBART generated Better Code

Interesting Code Generated by PLBART
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PLBART generated Better Code

Interesting Code Generated by PLBART
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Mutator

Code 
Modeling

Explicit 
Encoding

Implicit 
Encoding

Natural Channel 
Mutation

Formal Channel 
Mutation

Formal Channel Mutation



NatGen: Generative 
Pretraining by 
“Naturalizing” 
Source Code

- FSE 2022
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Findings

Forcing a model to edit 
unnatural code to re-write in a 
more natural way embeds 
developers’ natural way of 
writing code into the model. 

Contribution

Designed a large-scale pretrained 
model which learned natural 
coding patterns from developers, 
with demonstrated higher 
performance in few shot code 
generation.



NatGen: Generative pre-training by “Naturalizing” source 
code

Write Semantic / Functional Equivalent Code in “More Natural” way
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NatGen: Generative pre-training by “Naturalizing” source 
code
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NatGen: Generative pre-training by “Naturalizing” source 
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NatGen: Generative pre-training by “Naturalizing” source 
code

De-Naturalizing 

Transformation
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NatGen: Generative pre-training by “Naturalizing” source 
code

De-Naturalizing 

Transformation
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NatGen: De-Naturalizing Transformations
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Dead Code Insertion

NatGen: De-Naturalizing Transformations
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Dead Code Insertion

Confusing Statements [17]

[21] Gopstein et. al. 2020

NatGen: De-Naturalizing Transformations



274

Dead Code Insertion

Confusing Statements [17]

Operand Swap

[21] Gopstein et. al. 2020

NatGen: De-Naturalizing Transformations



Encoder Decoder

NatGen - Pretraining
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NatGen: Generative pre-training by “Naturalizing” source 
code



NatGen – FineTuning for code Editing

Encoder Decoder

NatGen - Pretraining
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NatGen: Generative pre-training by “Naturalizing” source 
code



NatGen

Evaluation
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NatGen: Automated Code Editing Result

BugFix dataset proposed by Tufano et al. (ICSE 2019) [7]

Exact Match accuracy (%) at Top 1 generated edit.
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Zero-Shot

NatGen: Automated Code Editing Result

Few-shot (200 training examples)
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NatGen: Automated Code Editing Result

Number of Training Examples
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• Little overhead
• Unsupervised
• Transferable

Pros

• No Guarantee
• Potential Bias from 

Mutation
• Pretraining needs massive 

resource

Cons

Code 
Modeling

Explicit 
Encoding

Implicit 
Encoding

Natural Channel 
Mutation

Formal Channel 
Mutation

Explicit Encoding – Take Aways
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Dissertation Summary
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Dissertation Summary

Encoder Decoder
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Dissertation Summary

Code Modeling

Explicit 
Encoding
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Encoding

Natural Channel 
Mutation

Formal Channel 
Mutation

Syntax

Semantics

Ways of 

Encoding

Encoder Decoder
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Dissertation Summary

Code Modeling

Explicit 
Encoding

Implicit 
Encoding

Natural Channel 
Mutation

Formal Channel 
Mutation

Syntax

Semantics

Ways of 

Encoding

Explicit 

Encoding

Large Data Corpus

Implicit 

Encoding

Encoder Decoder
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My Research Applications

Programming Language Processing

Code Summarization
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Synthesize

r



Future Plan (Short Term Goal) 

296

➢ Improving Semantic Code Search with RL

➢ API driven Program Synthesis

Synthesize

r
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➢ Learning Code Syntax and Semantics 
with Reinforcement Learning (RL)

Future Plan (Short Term Goal) 
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➢ Learning Code Syntax and Semantics 
with Reinforcement Learning (RL)

➢ Representing Code Context as 
Dynamic Graph

Future Plan (Short Term Goal) 
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Future Plan (Long Term Goal) 
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Guarantee for the Analysis
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NatGen: Code Generation By Pretrained Models

Model
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Match (%)
Dataflow 
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CodeBLEU

(%)
Direct 

Copy (%)
Avg. Edit 
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CodeT5[18] 13.83 23.67 10.87 0 65

PLBART 73.17 75.95 74.56 7.05 3

NatGen 98.16 96.85 96.82 0.01 10

[18] Wang et al. 2021
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1. CuBERT - Kanade et. al. 2020.
2. CodeBERT - Feng et. al. 2020.
3. GraphCodeBERT - Guo et. al. 2021
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Knowledge about generation is not embedded in 
Decoder. 
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