
Learning To Edit Code
Ph.D. Defense Presentation

Saikat Chakraborty
Department of Computer Science

Columbia University.

July 26, 2022

Committee

Dr. Gail Kaiser (Chair), Columbia University
Dr. Baishakhi Ray (Adviser), Columbia University
Dr. Kathleen McKeown, Columbia University
Dr. Junfeng Yang, Columbia University
Dr. Kai-Wei Chang, University of California at Los Angeles

Automatic Code Editing

123

Adding Feature

124

Adding Feature

Bug-fixing

125

Adding Feature

Bug-fixing

126

Refactoring

Code Edits Are Repetitive (Meng et. al. 2011[1], 2013[2], Ray et. al. 2015[3])

127

Code Edits Are Repetitive (Meng et. al. 2011[1], 2013[2], Ray et. al. 2015[3])(Meng et. al. 2011[1], 2013[2], Ray et. al. 2015[3])

128

Code Edits Are Repetitive (Meng et. al. 2011[1], 2013[2], Ray et. al. 2015[3])(Meng et. al. 2011[1], 2013[2], Ray et. al. 2015[3])

Is it possible to

Automate

Such Code Edits?

129

Automating Code Edits - Template/Search based

130

Edit Template

Automating Code Edits - Template/Search based

131

Edit Template

Automating Code Edits - Template/Search based

Match Found

132

Edit Template

Automating Code Edits - Template/Search based

133

Edit Template

Patch Applied

Automating Code Edits - Template/Search based

134

Edit Template

Patch Applied

● Too many templates to write (Saha et al.[22])

Code Editing Task - Learning Based Solution

135

Code Editing Task - Learning Based Solution

Example Code Edits

136

Code Editing Task - Learning Based Solution

Example Code Edits

Code Before Edit

137

Code Editing Task - Learning Based Solution

Example Code Edits

Code Before Edit Code After Edit

138

139

What are my Contributions?

140

1

What are my Contributions?

Identification of
Technical
Challenges in
Learning based Code
Editing.

2

141

1

What are my Contributions?

Identification of
Technical
Challenges in
Learning based Code
Editing.

Development of
Models for
Automated

Code Editing.

2

142

3

1

What are my Contributions?

Identification of
Technical
Challenges in
Learning based Code
Editing.

Development of
Models for
Automated

Code Editing.

Application in
Automatic
Program Repair
and Other SE
tasks.

Automated Code Editing - Existing works.

143

Automated Code Editing - Existing works.

144

Template-based 1. Modern IDE (Eclipse, IntelliJ IDEA) - Refactoring, Boilerplate Code.

2. Meng et.al. - PLDI’11 - Infer edit template with graph matching [1].

Automated Code Editing - Existing works.

145

Mutation Learning 1. Rolim et. al. - ICSE’17 - Designed a DSL for representing Edits [4].

2. Dinella et.al. - ICLR’20 - Neural Turing Machine [5].

Template-based 1. Modern IDE (Eclipse, IntelliJ IDEA) - Refactoring, Boilerplate Code.

2. Meng et.al. - PLDI’11 - Infer edit template with graph matching [1].

Automated Code Editing - Existing works.

146

Encoder-Decoder
1. Tufano et. al. - ASE’18 [6], ICSE’19 [7], TOSEM’19 [8].

- Abstract tokenization.

2. Chen et. al. - TSE’19 - Copy Attention-based models [9].

3. Tufano et. al. - ICSE’21. - Multi-Encoder models[10].

Mutation Learning 1. Rolim et. al. - ICSE’17 - Designed a DSL for representing Edits [4].

2. Dinella et.al. - ICLR’20 - Neural Turing Machine [5].

Template-based 1. Modern IDE (Eclipse, IntelliJ IDEA) - Refactoring, Boilerplate Code.

2. Meng et.al. - PLDI’11 - Infer edit template with graph matching [1].

Encoder-Decoder
Based Code Editing

147

Code Editing with Encoder-Decoder

Encoder and Decoder learns Edit Pattern and

To Apply the Pattern in Similar Context.

148

Encoder-Decoder Based Code Editing

Where does my dissertation stand?

149

150

Method
Concrete

Code
Syntactic

Correctness
Contextual
Correctness

Code
Naturalness

Multi
Modality

M. Tufano et. al. ASE 2018 [6], ICSE 2019 [7]

SequenceR - Chen et. al. TSE 2019 [9]

CODIT - TSE 2020

CodeBERT* - Feng et. al. EMNLP 2020 [11]

PLBART - NAACL 2021

CoCoNut - Lutellier et. al. ISSTA 2020 [12]

R. Tufano et. al. - ICSE 2021 [10]

MODIT – ASE 2021

NatGen – FSE 2022

Used/Guaranteed Not Used No guarantee Empirical guarantee

* While CodeBERT is an encoder only pretrained model, it has been used for program repair with a transformer decoder trained from scratch.

Code Editing with Encoder-Decoder

151

Code Editing with Encoder-Decoder

Encoder encodes the input code to a vector or matrix.

152

Code Editing with Encoder-Decoder

Encoder encodes the input code to a vector or matrix.Decoder generates the edited code.

153

Desired Properties of
Encoder and Decoder

154

155

Properties of Source Code.

156

Syntax
Structure

Properties of Source Code.

157

Syntax
Structure

Data
Dependency

Control
Dependency

Properties of Source Code.

Source

Code

158

Desired Properties of the Encoder

Encoder

Source

Code

159

Desired Properties of the Encoder

Encoder

Understand
Structure

Source

Code

160

Desired Properties of the Encoder

Encoder

Understand
Structure

Understand
Dependency

1. Syntactic correctness.

2. Semantic correctness.

161

Desired Properties of the Decoder

Decoder

1. Syntactic correctness.

2. Semantic correctness.

Syntactically Incorrect

162

Desired Properties of the Decoder

Decoder

1. Syntactic correctness.

2. Semantic correctness.

Syntactically Incorrect

163

Desired Properties of the Decoder

Decoder

1. Syntactic correctness.

2. Semantic correctness.

Syntactically Incorrect Semantically Incorrect

164

Desired Properties of the Decoder

Decoder

1. Syntactic correctness.

2. Semantic correctness.

Syntactically Incorrect Semantically Incorrect

165

Desired Properties of the Decoder

Decoder

1. Syntactic correctness.

2. Semantic correctness.

Syntactically Incorrect Semantically Incorrect

166

Desired Properties of the Decoder

Decoder

167

Code Editing as Understanding and Generation

168

Code Editing as Understanding and Generation

Understanding
Source Code

Understanding Structure
And Functionality of Source Code

169

Code Editing as Understanding and Generation

Understanding
Source Code

Understanding Structure
And Functionality of Source Code

Generating
Source Code

Ensuring the Syntactic and Semantic
Correctness for Generating Source Code

170

Code Editing as Understanding and Generation

Syntax

Semantics

Encoding

Understanding
Source Code

Understanding Structure
And Functionality of Source Code

Generating
Source Code

Ensuring the Syntactic and Semantic
Correctness for Generating Source Code

Code
Modeling

Explicit
Encoding

Implicit
Encoding

Natural Channel
Mutation

Formal Channel
Mutation

171

Syntax

Semantics

Ways of

Encoding

Encoding PL Properties

172

Code
Modeling

Explicit
Encoding

Implicit
Encoding

Natural Channel
Mutation

Formal Channel
Mutation

Explicit Encoding

173

Code
Modeling

Explicit
Encoding

Implicit
Encoding

Natural Channel
Mutation

Formal Channel
Mutation

Explicit Encoding

174

[13] Learning to Represent Program as Graphs

Allamanis et. al. 2017

[14] Learning to Represent Edits

Yin et. al. 2019

[5] HOPPITY – Dinella et. al. 2020

Code
Modeling

Explicit
Encoding

Implicit
Encoding

Natural Channel
Mutation

Formal Channel
Mutation

Explicit Encoding

CODIT: Code
Editing With
Tree Based

Neural Models
TSE - 2020

Findings

Generation of Syntax Tree

instead of code Guarantees

Syntactic Correctness.

Contribution

Tree/Grammar Based Model

for Automatic Code Editing.

175

176

CODIT: Code Editing With Tree Based Neural Models

Code Before Edit

177

CODIT: Code Editing With Tree Based Neural Models

Code Before Edit

178

CODIT: Code Editing With Tree Based Neural Models

Code Before Edit

179

CODIT: Code Editing With Tree Based Neural Models

Code Before Edit Code After Edit

180

CODIT: Code Editing With Tree Based Neural Models

Code Before Edit Code After Edit

181

CODIT: Code Editing With Tree Based Neural Models

Code Before Edit Code After Edit

182

CODIT: Code Editing With Tree Based Neural Models

183

CODIT Step 1 : Tree Translation

184

CODIT Step 1 : Tree Translation

185

CODIT Step 2 : Token Generation

Token

Translation

186

CODIT Step 2 : Token Generation

Token

Translation

187

CODIT Step 2 : Token Generation

188

CODIT Step 2 : Token Generation

189

CODIT Step 2 : Token Generation

Reachability Analysis in Edit Location
190

CODIT Step 2 : Token Generation

Reachability Analysis in Edit Location

Reachable Variables in

Edit Location:

{inst, object, tmp}

191

CODIT Step 2 : Token Generation

CODIT

Evaluation

192

Data Set
Number
of
Projects

Number
of Edit
Examples

Code Fragment Size

Number of Tokens Number of Nodes

Generic Code
Edit from Github

48 32,473
Max - 38
Avg - 15

Max - 47
Avg - 20

Pull Request
Edits –Tufano et
al. [7]

3 5546
Max - 34
Avg - 17

Max - 47
Avg - 23

193

CODIT: Study Subjects

Method Generic Code Edits Pull Request Edit

Sequence
Based

LSTM-Seq2Seq 3.77% 11.26%

Tufano et. al. [7] 6.57% 23.65%

SequenceR [9] 9.76% 26.43%

Tree Based

Tree2Seq 11.04% 23.49%

CODIT 15.94% 28.87%

194

CODIT: Results (Accuracy in top 5)

195

Example Edits

Addition

Deletion

Update

Application - Automatic Program repair

CODIT fixes 15 bugs completely and 10 bugs partially, out of 80 bugs in Defects4j.

196

JFreeChart

: Bug-8

Closure

Compiler:

Bug-3

197

Context Free Grammar

Explicit Encoding

198

Context Free GrammarReachability Analysis

Explicit Encoding

199

• Precision

• Guarantee

• Explainable

• Low Resource

Pros

• Model design overhead

• Transferability
Cons

Explicit Encoding – Take Away

Code
Modeling

Explicit
Encoding

Implicit
Encoding

Natural Channel
Mutation

Formal Channel
Mutation

200

Implicit Encoding

Code
Modeling

Explicit
Encoding

Implicit
Encoding

Natural Channel
Mutation

Formal Channel
Mutation

201

Implicit Encoding

Code
Modeling

Explicit
Encoding

Implicit
Encoding

Natural Channel
Mutation

Formal Channel
Mutation

Large Data Corpus

202

[11] CodeBERT – Feng et. al. 2019

[16] GraphCodeBERT – Guo et. al. 2020

[17] CodeX – Chen et. al. 2021

[18] CodeT5 – Wang et. al. 2021

Implicit Encoding

Code
Modeling

Explicit
Encoding

Implicit
Encoding

Natural Channel
Mutation

Formal Channel
Mutation

Large Data Corpus

Corrupted Input Code Regenerated Correct Code

203

Implicit Encoding - Pretraining

[17] CodeX – Chen et. al. 2021

[21] Github Copilot

[22] Amazon CodeWhisperer

204

Implicit Encoding - Pretraining

Large Models
(Millions of
Parameters)

[17] CodeX – Chen et. al. 2021

[21] Github Copilot

[22] Amazon CodeWhisperer

205

Implicit Encoding - Pretraining

Hundreds of
Gigabytes of
source code

Large Models
(Millions of
Parameters)

[17] CodeX – Chen et. al. 2021

[21] Github Copilot

[22] Amazon CodeWhisperer

206

Implicit Encoding - Pretraining

Hundreds of
Gigabytes of
source code

Large Models
(Millions of
Parameters)

Large numbers
of unsupervised

training steps
[17] CodeX – Chen et. al. 2021

[21] Github Copilot

[22] Amazon CodeWhisperer

207

Implicit Encoding - Pretraining

Large Data Corpus

208

Implicit Encoding - Pretraining

Large Data Corpus

EncoderDecoder

209

Implicit Encoding - Pretraining

Correct Code

Large Data Corpus

EncoderDecoder

210

Implicit Encoding - Pretraining

Correct Code
Noise

Injector

Large Data Corpus

EncoderDecoder

211

Implicit Encoding - Pretraining

Correct Code Noisy Code
Noise

Injector

Large Data Corpus

EncoderDecoder

212

Implicit Encoding - Pretraining

Correct Code Noisy Code
Noise

Injector

Large Data Corpus

EncoderDecoder

213

Implicit Encoding - Pretraining

Correct Code Noisy Code
Noise

Injector

Large Data Corpus

EncoderDecoder

214

Implicit Encoding - Finetuning

Input (e.g. Code
before edit, Context,

etc.)

Output (e.g. Code
after edit

Finetuning

Correct Code Noisy Code

EncoderDecoder

Noise

Injector

215

Noise Injectors & Dual Channel Hypothesis for Source Code [19]

Correct Code Noisy Code

Noise Injector

216

Noise Injectors & Dual Channel Hypothesis for Source Code [19]

Correct Code Noisy Code

Noise Injector

217

Natural Channel [19, 20]

Noise Injectors & Dual Channel Hypothesis for Source Code [19]

Correct Code Noisy Code

Noise Injector

218

Natural Channel [19, 20] Formal Channel

Noise Injectors & Dual Channel Hypothesis for Source Code [19]

Correct Code Noisy Code

Noise Injector

219

[19] Casalanuovo et. al. 2020

[20] Karampatsis et. al. 2020

Natural Channel [19, 20] Formal Channel

Noise Injectors & Dual Channel Hypothesis for Source Code [19]

Correct Code Noisy Code

Noise Injector

220

Mutator

Code
Modeling

Explicit
Encoding

Implicit
Encoding

Natural Channel
Mutation

Formal Channel
Mutation

Natural Channel Mutation

Unified Pre-
training for

Program
Understanding
and Generation

(PLBART)
NAACL - 2021

221

Findings

PL properties can be learned

from large scale source- code

dataset.

Contribution

Developed large scale pre-

trained models for different SE

tasks.

PLBART – What Is It?

222

Encoder Decoder

PLBART – What Is It?

223

Encoder Decoder

• Transformer Based Models

• 6 Encoder Layer, 6 Decoder Layer

• 12 attention heads

224

PLBART – Components

225

Encoder

1. Read Code.

2. Understands Code.

3. Reason about any errors in code.

4. Learns robust representation

PLBART – Components

226

Encoder

1. Read Code.

2. Understands Code.

3. Reason about any errors in code.

4. Learns robust representation

1. Generate Code.

2. Learns Coding Patterns.
Decoder

PLBART – Components

Correct Code Noisy Code

EncoderDecoder

Noise Injector

PLBART

227

PLBART – Pretraining

Correct Code Noisy Code

EncoderDecoder

Noise Injector

PLBART

228

Token Masking Token Deletion Token Infilling

PLBART – Pretraining

229

Token Masking

PLBART – Jointly Learning to Understand and Generate

230

Token Masking

PLBART – Jointly Learning to Understand and Generate

PLBART

231

Token Masking

PLBART – Jointly Learning to Understand and Generate

PLBART

232

Token Deletion

PLBART – Jointly Learning to Understand and Generate

233

Token Deletion

PLBART – Jointly Learning to Understand and Generate

PLBART

234

Token Deletion

PLBART – Jointly Learning to Understand and Generate

PLBART

235

Token Infilling

PLBART – Jointly Learning to Understand and Generate

236

Token Infilling

PLBART – Jointly Learning to Understand and Generate

PLBART

237

Token Infilling

PLBART – Jointly Learning to Understand and Generate

PLBART

PLBART – Pretraining

● Noise Properties
○ Mutate Natural Channel

○ Likely to Break Syntax

238

PLBART – Pretraining

● Noise Properties
○ Mutate Natural Channel

○ Likely to Break Syntax

● Training Objectives
○ Generate the whole code.

○ Learns syntax implicitly

○ Learn Coding Patterns.

● Multi-lingual Training
○ Java

○ Python

○ NL from Stack overflow

239

PLBART – Pretraining

● Noise Properties
○ Mutate Natural Channel

○ Likely to Break Syntax

● Training Objectives
○ Generate the whole code.

○ Learns syntax implicitly

○ Learn Coding Patterns.

● Multi-lingual Training
○ Java

○ Python

○ NL from Stack overflow

240

PLBART

Evaluation

241

Downstream Tasks

242

Downstream Tasks

243

Code Editing (Program Repair) Result

Dataset: Bugfix dataset, Tufano et. al. 2019 [7] – Abstract Edit
Metric: EM (exact match) in Top-1 position

244

Small - Upto 50 Tokens

Medium - 51-100 tokens

245

246

Developers Guidance

247

Developers Guidance Context

248

Developers Guidance Context

MODIT : Multi-
Modal Learning of

Editing Source
Code

- ASE 2021

249

Findings

Developer Guidance and

Context of Edit are very

important for Automated Code

Editing.

Contribution

Leveraging multiple

information modalities to

Automate Code editing, and

identification of best way of

processing such modalities.

250

MODIT : Multi Modal Code Editing (pipeline)

251

MODIT : Multi Modal Code Editing (pipeline)

252

MODIT : Multi Modal Code Editing (pipeline)

PLBART

253

MODIT : Multi Modal Code Editing (pipeline)

PLBART

MODIT

Evaluation

254

255

Experiments

Dataset (Tufano et. al. ICSE 2019 [7]) – Concrete Edits

(PLBART)

256

MODIT : Result

257

Interesting Code Generated by PLBART

258

PLBART generated

Interesting Code Generated by PLBART

259

PLBART generated Better Code

Interesting Code Generated by PLBART

260

PLBART generated Better Code

Interesting Code Generated by PLBART

261

PLBART generated Better Code

Interesting Code Generated by PLBART

262

Mutator

Code
Modeling

Explicit
Encoding

Implicit
Encoding

Natural Channel
Mutation

Formal Channel
Mutation

Formal Channel Mutation

NatGen: Generative
Pretraining by
“Naturalizing”
Source Code

- FSE 2022

263

Findings

Forcing a model to edit
unnatural code to re-write in a
more natural way embeds
developers’ natural way of
writing code into the model.

Contribution

Designed a large-scale pretrained
model which learned natural
coding patterns from developers,
with demonstrated higher
performance in few shot code
generation.

NatGen: Generative pre-training by “Naturalizing” source
code

Write Semantic / Functional Equivalent Code in “More Natural” way

264

265

NatGen: Generative pre-training by “Naturalizing” source
code

266

NatGen: Generative pre-training by “Naturalizing” source
code

267

NatGen: Generative pre-training by “Naturalizing” source
code

268

NatGen: Generative pre-training by “Naturalizing” source
code

De-Naturalizing

Transformation

269

NatGen: Generative pre-training by “Naturalizing” source
code

De-Naturalizing

Transformation

270

NatGen: Generative pre-training by “Naturalizing” source
code

De-Naturalizing

Transformation

271

NatGen: De-Naturalizing Transformations

272

Dead Code Insertion

NatGen: De-Naturalizing Transformations

273

Dead Code Insertion

Confusing Statements [17]

[21] Gopstein et. al. 2020

NatGen: De-Naturalizing Transformations

274

Dead Code Insertion

Confusing Statements [17]

Operand Swap

[21] Gopstein et. al. 2020

NatGen: De-Naturalizing Transformations

Encoder Decoder

NatGen - Pretraining

275

NatGen: Generative pre-training by “Naturalizing” source
code

NatGen – FineTuning for code Editing

Encoder Decoder

NatGen - Pretraining

276

NatGen: Generative pre-training by “Naturalizing” source
code

NatGen

Evaluation

277

278

NatGen: Automated Code Editing Result

BugFix dataset proposed by Tufano et al. (ICSE 2019) [7]

Exact Match accuracy (%) at Top 1 generated edit.

279

Zero-Shot

NatGen: Automated Code Editing Result

Few-shot (200 training examples)

280

NatGen: Automated Code Editing Result

Number of Training Examples

281

• Little overhead
• Unsupervised
• Transferable

Pros

• No Guarantee
• Potential Bias from

Mutation
• Pretraining needs massive

resource

Cons

Code
Modeling

Explicit
Encoding

Implicit
Encoding

Natural Channel
Mutation

Formal Channel
Mutation

Explicit Encoding – Take Aways

282

Dissertation Summary

283

Dissertation Summary

Encoder Decoder

284

Dissertation Summary

Code Modeling

Explicit
Encoding

Implicit
Encoding

Natural Channel
Mutation

Formal Channel
Mutation

Syntax

Semantics

Ways of

Encoding

Encoder Decoder

285

Dissertation Summary

Code Modeling

Explicit
Encoding

Implicit
Encoding

Natural Channel
Mutation

Formal Channel
Mutation

Syntax

Semantics

Ways of

Encoding

Explicit

Encoding

Encoder Decoder

286

Dissertation Summary

Code Modeling

Explicit
Encoding

Implicit
Encoding

Natural Channel
Mutation

Formal Channel
Mutation

Syntax

Semantics

Ways of

Encoding

Explicit

Encoding

Large Data Corpus

Implicit

Encoding

Encoder Decoder

287

List of Publications

1. NatGen: Generative pre-training by" Naturalizing" source code - S Chakraborty, T Ahmed, Y Ding, P Devanbu, B Ray.

The ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE 2022).

2. Towards Learning (Dis)-Similarity of Source Code from Program Contrasts - Y Ding, L Buratti, S Pujar, A Morari, B Ray, S

Chakraborty Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL’22).

3. On Multi-Modal Learning of Editing Source Code - S Chakraborty, B Ray 2021 36th IEEE/ACM International

Conference on Automated Software Engineering (ASE’21).

4. Retrieval Augmented Code Generation and Summarization - MR Parvez, WU Ahmad, S Chakraborty, B Ray, KW Chang

Findings of the Association for Computational Linguistics 2021 (ENMLP).

5. Deep learning-based vulnerability detection: Are we there yet? - S Chakraborty, R Krishna, Y Ding, B Ray IEEE

Transactions on Software Engineering (TSE’21).

6. Unified Pre-training for Program Understanding and Generation - WU Ahmad, S Chakraborty, B Ray, KW Chang

Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL’21).

7. CODIT: Code editing with tree-based neural models - S Chakraborty, Y Ding, M Allamanis, B Ray IEEE Transactions on

Software Engineering (TSE’20).

8. A transformer-based Approach for Source Code Summarization - W Ahmad, S Chakraborty, B Ray, KW Chang Association

for Computational Linguistics (ACL’20).

9. Toward optimal selection of information retrieval models for software engineering tasks - MM Rahman, S Chakraborty, G

Kaiser, B Ray 2019 19th International Working Conference on Source Code Analysis and Maintenance (SCAM’19).

10. Building language models for text with named entities - MR Parvez, S Chakraborty, B Ray, KW Chang 56th Annual Meeting

of the Association for Computational Linguistics (ACL’18).

11. Which similarity metric to use for software documents? A study on information retrieval-based software engineering tasks -

MM Rahman, S Chakraborty, B Ray Proceedings of the 40th International Conference on Software Engineering (ICSE’18).

My Research Applications

Programming Language Processing

PLP

288

My Research Applications

Programming Language Processing

Code Summarization
NeuralCodeSum (ACL’20), PLBART (NAACL’21)

PLP

289

My Research Applications

Programming Language Processing

Code Summarization
NeuralCodeSum (ACL’20), PLBART (NAACL’21)

Vulnerability Detection
ReVeal(TSE’21), BOOST(ACL’22)

PLP

290

My Research Applications

Programming Language Processing

Code Summarization
NeuralCodeSum (ACL’20), PLBART (NAACL’21)

Vulnerability Detection
ReVeal(TSE’21), BOOST(ACL’22)

Code Editing
CODIT (TSE’20), MODIT(ASE’21), DiffBERT

(Facebook), NatGen(FSE’22) PLP

291

My Research Applications

Programming Language Processing

Code Summarization
NeuralCodeSum (ACL’20), PLBART (NAACL’21)

Vulnerability Detection
ReVeal(TSE’21), BOOST(ACL’22)

Code Editing
CODIT (TSE’20), MODIT(ASE’21), DiffBERT

(Facebook), NatGen(FSE’22)

Code Generation
PLBART (NAACL’21), DataTypeLM ForCode (ACL’18)

NatGen (FSE’22)

PLP

292

My Research Applications

Programming Language Processing

Code Summarization
NeuralCodeSum (ACL’20), PLBART (NAACL’21)

Vulnerability Detection
ReVeal(TSE’21), BOOST(ACL’22)

Code Editing
CODIT (TSE’20), MODIT(ASE’21), DiffBERT

(Facebook), NatGen(FSE’22)

Code Generation
PLBART (NAACL’21), DataTypeLM ForCode (ACL’18)

NatGen (FSE’22)

Code Search and Synthesis
RedCoder (EMNLP’21), CodePanda (W.I.P)

PLP

293

Future Plan (Short Term Goal)

294

Future Plan (Short Term Goal)

295

➢ API driven Program Synthesis

Synthesize

r

Future Plan (Short Term Goal)

296

➢ Improving Semantic Code Search with RL

➢ API driven Program Synthesis

Synthesize

r

297

➢ Learning Code Syntax and Semantics
with Reinforcement Learning (RL)

Future Plan (Short Term Goal)

298

➢ Learning Code Syntax and Semantics
with Reinforcement Learning (RL)

➢ Representing Code Context as
Dynamic Graph

Future Plan (Short Term Goal)

299

Future Plan (Long Term Goal)

300

Formal Analysis Probabilistic models

Guarantee for the Analysis

Noise Intolerant

Scalable and Transferrable

No theoretical Guarantee

➢ Code Generation

Future Plan (Long Term Goal)

301

Formal Analysis Probabilistic models

Guarantee for the Analysis

Noise Intolerant

Scalable and Transferrable

No theoretical Guarantee

➢ Code Generation

Future Plan (Long Term Goal)

302

Formal Analysis Probabilistic models

Guarantee for the Analysis

Noise Intolerant

Scalable and Transferrable

No theoretical Guarantee

➢ Code Generation

➢ Developer Feedback Oriented Automation

Future Plan (Long Term Goal)

303

Formal Analysis Probabilistic models

Guarantee for the Analysis

Noise Intolerant

Scalable and Transferrable

No theoretical Guarantee

➢ Code Generation

➢ Developer Feedback Oriented Automation

Future Plan (Long Term Goal)

Baishakhi Ray

Adviser

304

Wasi Ahmad

UCLA / Amazon

Miltos Allanmanis

MSR

Kai-Wei Chang

UCLA

Prem Devanbu

UC Davis
Yangruibo Ding

Columbia

Gail Kaiser

Columbia University
Rahul Krishna

Columbia / IBM
Toufiq Parag

UC Davis

Rizwan Parvez

UCLA

Masudur Rahman

Uva/Purdue

305

References

[1] Meng, Na, Miryung Kim, and Kathryn S. McKinley. "Systematic editing: generating program transformations from an

example." ACM SIGPLAN Notices 46.6 (2011): 329-342.

[2] Meng, Na, Miryung Kim, and Kathryn S. McKinley. "LASE: locating and applying systematic edits by learning from

examples." 2013 35th International Conference on Software Engineering (ICSE). IEEE, 2013.

[3] Ray, Baishakhi, et al. "The uniqueness of changes: Characteristics and applications." 2015 IEEE/ACM 12th Working

Conference on Mining Software Repositories. IEEE, 2015.

[4] Rolim, Reudismam, et al. "Learning syntactic program transformations from examples." 2017 IEEE/ACM 39th

International Conference on Software Engineering (ICSE). IEEE, 2017.

[5] Dinella, Elizabeth, et al. "Hoppity: Learning graph transformations to detect and fix bugs in programs." International

Conference on Learning Representations (ICLR). 2020.

[6] Tufano, Michele, et al. "An empirical investigation into learning bug-fixing patches in the wild via neural machine

translation." Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. 2018.

[7] Tufano, Michele, et al. "On learning meaningful code changes via neural machine translation." 2019 IEEE/ACM 41st

International Conference on Software Engineering (ICSE). IEEE, 2019.

[8] Tufano, Michele, et al. "An empirical study on learning bug-fixing patches in the wild via neural machine translation."

ACM Transactions on Software Engineering and Methodology (TOSEM) 28.4 (2019): 1-29.

[9] Chen, Zimin, et al. "Sequencer: Sequence-to-sequence learning for end-to-end program repair." IEEE Transactions on

Software Engineering 47.9 (2019): 1943-1959.

[10] Tufano, Rosalia, et al. "Towards automating code review activities." 2021 IEEE/ACM 43rd International Conference on

Software Engineering (ICSE). IEEE, 2021.

[11] Feng, Zhangyin, et al. "CodeBERT: A Pre-Trained Model for Programming and Natural Languages." Findings of the

Association for Computational Linguistics: EMNLP 2020. 2020.

306

References

[12] Lutellier, Thibaud, et al. "Coconut: combining context-aware neural translation models using ensemble for program

repair." Proceedings of the 29th ACM SIGSOFT international symposium on software testing and analysis. 2020.

[13] Allamanis, Miltiadis, Marc Brockschmidt, and Mahmoud Khademi. "Learning to Represent Programs with Graphs."

International Conference on Learning Representations. 2018.

[14] Yin, Pengcheng, et al. "Learning to Represent Edits." International Conference on Learning Representations. 2018.

[15] Zhou, Yaqin, et al. "Devign: Effective vulnerability identification by learning comprehensive program semantics via

graph neural networks." Advances in neural information processing systems 32 (2019).

[16] Guo, Daya, et al. "GraphCodeBERT: Pre-training Code Representations with Data Flow." International Conference on

Learning Representations. 2020.

[17] Chen, Mark, et al. "Evaluating Large Language Models Trained on Code." (2021).

[18] Wang, Yue, et al. "CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and

Generation." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.

[19] Casalnuovo, Casey, et al. "A theory of dual channel constraints." 2020 IEEE/ACM 42nd International Conference on

Software Engineering: New Ideas and Emerging Results (ICSE-NIER). IEEE, 2020.

[20] Karampatsis, Rafael-Michael, et al. "Big code!= big vocabulary: Open-vocabulary models for source code." 2020

IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE, 2020.

[21] Gopstein, Dan, et al. "Thinking aloud about confusing code: A qualitative investigation of program comprehension and

atoms of confusion." Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 2020.

[22] Saha, Ripon K., et al. "Elixir: Effective object-oriented program repair." 2017 32nd IEEE/ACM International Conference

on Automated Software Engineering (ASE). IEEE, 2017.

307

Backup Slides

308

309

CODIT Step 1 : Tree Translation

310

CODIT Step 1 : Tree Translation

311

CODIT Step 1 : Tree Translation

312

CODIT Step 1 : Tree Translation

313

CODIT Step 1 : Tree Translation

Rules sequence of

Syntax Tree before edit

Rules sequence of

Syntax Tree after edit

314

CODIT Step 1 : Tree Translation

315

CODIT Step 1 : Tree Translation

316

CODIT Step 1 : Tree Translation

317

CODIT Step 1 : Tree Translation

318

CODIT Step 1 : Tree Translation

319

CODIT Step 1 : Tree Translation

ReVeal: Program
Understanding

through Explicit
Program
Encoding

TSE - 2021

Findings

Graph-based models are better

equipped to understand

semantic relationships between

code components

Contribution

Designed Code Understanding

Framework using Graph-Based

Models.

320

Training
Data

321

ReVeal : Explicit Encoding for Program Understanding

Training
Data

Code Property
Graph

322

ReVeal : Explicit Encoding for Program Understanding

Training
Data

Code Property
Graph

Node
Features

323

ReVeal : Explicit Encoding for Program Understanding

Training
Data

Code Property
Graph

Node
Features

GGNN

324

ReVeal : Explicit Encoding for Program Understanding

Training
Data

Code Property
Graph

Node
Features

GGNN

Graph Embedding
325

ReVeal : Explicit Encoding for Program Understanding

Training
Data

Code Property
Graph

Node
Features

GGNN

Graph Embedding
Trained ReVeal

326

ReVeal : Explicit Encoding for Program Understanding

F
1

 s
co

re

Chromium & Debian

Token
Based

Graph
Based

[15]

Token
Based

Graph
Based

[15]

FFMpeg & Qemu

327

ReVeal : Explicit Encoding for Program Understanding

F
1

 s
co

re

Chromium & Debian

Token
Based

Graph
Based

[15]

Token
Based

Graph
Based

[15]

FFMpeg & Qemu

ReVeal

328

ReVeal : Explicit Encoding for Program Understanding

F
1

 s
co

re

Chromium & Debian

Token
Based

Graph
Based

[15]

Token
Based

Graph
Based

[15]

FFMpeg & Qemu

ReVeal

329[15] Devign Zhou et. al. 2019

ReVeal : Explicit Encoding for Program Understanding

Explicit Encoding PL knowledge into model

330

Code Property Graph

PLBART Results

● Code Summarization

331

PLBART Results

● Code Generation from Natural Language

332

PLBART Results

● Code Translation

333

PLBART Results

● Code Classification - % Accuracy for Vulnerability, F1 score for Clone

Detection.

334

335

Code Translation Example

336

Code Translation Example

337

Code Translation Example

338

Code Translation Example

339

340

341

342

343

344

345

346

347

Transformers can learn syntax

348

Transformers can learn syntax

349

Pretrained models improves Code editing

350

Pretrained models improves Code editing

351

Pretrained models improves Code editing

352

Multi Modality Improves Code Editing

353

Multi Modality Improves Code Editing

354

Multi Modality Improves Code Editing

355

Multi Modality Improves Code Editing

356

Multi Modality Improves Code Editing

357

Impact of Different Information Modality.

358

Impact of Different Information Modality.

359

Impact of Different Information Modality.

360

Impact of Different Information Modality.

361

Impact of Different Information Modality.

362

Im
p
ac

t
o
f

G
u

id
an

ce

Impact of Different Information Modality.

363

Im
p
ac

t
o
f

G
u

id
an

ce

Impact of Different Information Modality.

364

Im
p

ac
t

o
f

C
o

n
te

x
t

Impact of Different Information Modality.

365

Im
p

ac
t

o
f

C
o

n
te

x
t

Impact of Different Information Modality.

366

R. Tufano et. al. - ICSE 2021

Best way to encode input Modalities.

367

Best way to encode input Modalities.

368

Best way to encode input Modalities.

369

Best way to encode input Modalities.

370

Best way to encode input Modalities.

371

Best way to encode input Modalities.

372

Best way to encode input Modalities.

373

NatGen: Code Generation By Pretrained Models

Model
Syntax

Match (%)
Dataflow

Match (%)
CodeBLEU

(%)
Direct

Copy (%)
Avg. Edit
Distance

CodeT5[18] 13.83 23.67 10.87 0 65

PLBART 73.17 75.95 74.56 7.05 3

NatGen 98.16 96.85 96.82 0.01 10

[18] Wang et al. 2021

374

NatGen: Code Generation By Pretrained Models

Model
Syntax

Match (%)
Dataflow

Match (%)
CodeBLEU

(%)
Direct

Copy (%)
Avg. Edit
Distance

CodeT5[18] 13.83 23.67 10.87 0 65

PLBART 73.17 75.95 74.56 7.05 3

NatGen 98.16 96.85 96.82 0.01 10

[18] Wang et al. 2021

375

NatGen: Code Generation By Pretrained Models

Model
Syntax

Match (%)
Dataflow

Match (%)
CodeBLEU

(%)
Direct

Copy (%)
Avg. Edit
Distance

CodeT5[18] 13.83 23.67 10.87 0 65

PLBART 73.17 75.95 74.56 7.05 3

NatGen 98.16 96.85 96.82 0.01 10

[18] Wang et al. 2021

376

NatGen: Code Generation By Pretrained Models

Model
Syntax

Match (%)
Dataflow

Match (%)
CodeBLEU

(%)
Direct

Copy (%)
Avg. Edit
Distance

CodeT5[18] 13.83 23.67 10.87 0 65

PLBART 73.17 75.95 74.56 7.05 3

NatGen 98.16 96.85 96.82 0.01 10

[18] Wang et al. 2021

377

NatGen: Code Generation By Pretrained Models

Model
Syntax

Match (%)
Dataflow

Match (%)
CodeBLEU

(%)
Direct

Copy (%)
Avg. Edit
Distance

CodeT5[18] 13.83 23.67 10.87 0 65

PLBART 73.17 75.95 74.56 7.05 3

NatGen 98.16 96.85 96.82 0.01 10

[18] Wang et al. 2021

NatGen Results

● NL to Code Generation

378

NatGen Results

● Code Translations

379

NatGen Results

● Code Summarization

380

NatGen Results

● Zero Shot Learning

381

NatGen Results

● Few Shot Learning

382

NatGen Results

● Few Shot - Ablation

383

NatGen Results

● Few Shot - Ablation

384

385

Language

Model
Edit Model

Language

Model

Code Before Edit Code After Edit

386

Pretraining - Embed the knowledge of input and
output into the model.

387

PLBART - Pretraining both encoder and decoder.

Encoder Decoder

388

PLBART - Pretraining both encoder and decoder.

What Type of Model should we use?

Encoder Decoder

389

Recurrent Model Vs. Transformer Model

390

Recurrent Model Vs. Transformer Model

1. Recurrent Model

391

Recurrent Model Vs. Transformer Model

1. Recurrent Model

392

Recurrent Model Vs. Transformer Model

1. Recurrent Model

393

Recurrent Model Vs. Transformer Model

1. Recurrent Model

394

Recurrent Model Vs. Transformer Model

1. Recurrent Model

395

Recurrent Model Vs. Transformer Model

1. Recurrent Model

2. Transformer Model

396

Recurrent Model Vs. Transformer Model

1. Recurrent Model

2. Transformer Model

397

Recurrent Model Vs. Transformer Model

1. Recurrent Model

2. Transformer Model

398

Recurrent Model Vs. Transformer Model

1. Recurrent Model

2. Transformer Model

T4

399

Recurrent Model Vs. Transformer Model

1. Recurrent Model

2. Transformer Model

T4

400

401

402

403

404

405

406

BERT - Pretrained Transformer Encoder

407

BERT - Pretrained Transformer Encoder

Pre-training:
Task agnostic Masked Language Model.

408

BERT - Pretrained Transformer Encoder

Pre-training:
Task agnostic Masked Language Model.

409

BERT - Pretrained Transformer Encoder

Pre-training:
Task agnostic Masked Language Model.

410

BERT - Pretrained Transformer Encoder

Pre-training:
Task agnostic Masked Language Model.

411

BERT - Pretrained Transformer Encoder

Pre-training:
Task agnostic Masked Language Model.

SE usage: Better Suitable for Understanding Code.

412

BERT - Pretrained Transformer Encoder

Pre-training:
Task agnostic Masked Language Model.

SE usage: Better Suitable for Understanding Code.

413

1. CuBERT - Kanade et. al. 2020.
2. CodeBERT - Feng et. al. 2020.
3. GraphCodeBERT - Guo et. al. 2021

414

Knowledge about generation is not embedded in
Decoder.

415

CodeBERT vs. CodeGPT vs. PLBART

416

CodeBERT vs. CodeGPT vs. PLBART

BERT

417

CodeBERT vs. CodeGPT vs. PLBART

BERT GPT

418

CodeBERT vs. CodeGPT vs. PLBART

BERT GPT

PLBART

